Characterization of the functional module responsible for the low temperature optimum of a rice α -amylase (Amy 3E)

Rei Abe, Yogo Chiba & Tasuku Nakajima*

Division of Life Science, Graduate School of Agriculture, Tohoku University, Tsutsumidori-Amamiyamachi, Sendai,-shi, 981-8555, Japan; fax: 81-22-717-8778, e-mail: tasuku@biochem.tohoku. ac.jp

ABE, R., CHIBA, Y. & NAKAJIMA, T., Characterization of the functional module responsible for the low temperature optimum of a rice α -amylase (Amy 3E). Biologia, Bratislava, **57/Suppl. 11:** 197—202, 2002; ISSN 0006-3088.

Cultured cells of rice produce two α -amylase isozymes, AMY-I(Amy 1A) and AMY-III(Amy 3E). Eight chimeric genes, constructed from various combination of AMY-I and AMY-III cDNA fragments, were expressed using a bacterial expression system, and each recombinant chimeric protein was characterized. Four of the eight recombinant enzymes, having region c (one of the four regions having unconserved base sequences between AMY-I and AMY-III cDNAs) of AMY-I, showed the same enzyme characteristics as those of native AMY-I, which had a high temperature optimum at 50 °C. The other four chimeric proteins carrying region c of AMY-III showed AMY-III type characteristics and exibited a low temperature optimum at 25 °C. These results suggest that the region c (Phe179–Trp205: α -helix-4, β -sheet-5, α -helix-5) is responsible for the property of the low temperature optimum of AMY-III.

Key words: plant α -amylases, cultured-rice cells, chimeric enzymes.

Abbreviations: AMY-I and AMY-III, α -amylase (EC 3.2.1.1) isozymes I and III from cultured rice cells; AMY, gene encoding AMY; G17, malto-heptadecasaccharide.

Introduction

Alpha-amylases (1,4- α -D-glucan glucanohydrolase; EC 3.2.1.1) are widespread among plants, mammals, insects, fungi and bacteria, and a number of their cDNAs have been cloned. In higher plants, α -amylases are important in germinating seeds and usually are present as multiple isoforms. In culturedcells of rice, ten α -amylase isoforms have been found (MITSUI et al., 1996).

We have found two distinct α -amylases, AMY-I and AMY-III in suspension-cultured rice cells (*Oryzae sativa* cv Sasanishiki). One of these, AMY-III, showed unique enzymatic properties when compared to the other usual α -amylases including AMY-I (CHIBA et al., 1990, 1991). It had a low temperature optimum at 25 °C and an abnormal curve for the Arrhenius plots, indicating great conformational change of the enzyme structure occurring around 25 °C. The AMY-III also showed great reduction of its activity when raw corn starch or a higher maltooligosacharide of DP 17 (G17) was added to the assay mixture.

A number of recombinant rice α -amylase

^{*} Corresponding author

AMY-I AMY-III	1:M-KNTS SLCLLLL VVLCS LTCNS GQAQVLFQGFNWE SWKQQGGWYNMLKGQ VDDTAKAGV 1:MGKHHVTLCCVVFAVLC-LAS SLAQAQVLFQGFNWE SWRKQGGWYN FLHEK VE ETA STGA	59 59
AMY-I AMY-III	b A 60 : TH VWLPP P SH SV APQ GYMPGR LYDLDA SKYGTAAE LK SLIAA FHGKG VQC VAD VVIDHRC 60 : TH VWLPP P SH SV SPQ GYMPGR LYDLDA SKYGT EAE LK SLIEA FHDKN VEC LADIVIDHRC	119 119
AMY-I AMY-III	120 : A EKK DARGVYC VFE GG TPD -R LDWGP GMIC S DDT QY SEG TG HRD TG EG F GAAPD ID HLNP 120 : ADYK D S RGVYC VFE GG TPD GR LDWGP DMIC S DDT QY SNG RG HRD TG AGF GAAPD ID HLNP	178 179
AMY-I AMY-III	BCCC 179 : R VQR EL TDW LN WLK SD VG FDG VIRL DFAKGYS TDIAK MYV ESCKPGFVVAEIWN SL S YNGD 180 : R VQR EL TDW LN WLR TD LG FDF VIRL DFAKGYS AP LAR IYVDN TNP TFVVGEIWSSLIYNGD	238 239
AMY-I AMY-III	239 : GKPAAN QDQ GR Q EL VN WWN AV GGP AM TFD FT TKG LL QAG VQ G EL YR LRD GN GKAPG MDG W 240 : GKP S TN <u>QDADR Q EL V</u> N WVE GV GKP AT AFD FT TKG IL QAA VQ G EL YR LHD GN GKAPG LMG W	298 299
AMY-I AMY-III	D 299 : LPEK AVTFVDNHDTGS TOK LWPFP SDKVMOG YAYIL THPGVPCIFYDHMFD WNLKO EITA 300 : MPDO AVTFVDNHDTGS TOS LWPFP SDKVMOG YAYIL THPGIPCIFYDHV FDWNLOH EIAT	358 359
AMTY-I	d 359 - LAATRERNG TNAG SKI RTVVADADA AVVAVVD FKVMVKTG TRYDVGNAVD SD FHD TVHGKD	418
AMY-III	360 : LAEIR SRNG IHAE STLOILKA EGD IY VAMID GKVITKLGPR YDAGG IIP SD FHÙVAHGND	419
AMY-I AMY-III	419 :YSWYEKGSLRVPAGR-HL 420 :YCWYEKEGFRVPAGRKHY	435 437

Fig. 1. Deduced amino acid sequences of AMY-I and AMY-III from rice cultured cells. A, B, C, and D are highly similar regions in all α -amylases (known as conserved sequence regions I, II, III, and IV; NAKAJIMA et al., 1986). Small letters a, b, c, and d are unconserved regions with low amino acid sequence similarity between AMY-I and AMY-III.

isozymes (TERASHIMA et al., 1995) and barley α amylase isozymes (SOGAARD & SVENSSON, 1990) have been produced and characterized using yeast expression systems. The nucleotide sequence analyses of AMY-I and AMY-III indicated that the AMY-I had an identical sequence to that of the cDNA clone of pOS137(Amy1A) which was obtained from germinated rice seed (O'NEILL et al., 1990), and the AMY-III was identical to that of a genomic clone without introns of Ramy-3E obtained from rice (M202) DNA (HUANG et al., 1990).

To understand which part of the protein modules is responsible for the unique properties of AMY-III, we constructed various combinations of AMY-I and AMY-III cDNAs, and characterized these chimeric gene products expressed in *Escherichia coli*.

Properties of the rice cell α -amylase isozymes AMY-I and AMY-III

Two groups of α -amylase isozymes were purified and characterized from cultured rice (*Oryzae sativa* cv Sasanishiki) cells (Tab. 1). By native PAGE, three activity bands are detected (AMY-I, AMY-II and AMY-III). AMY-I and AMY-II were 45 kDa proteins and were charged isomers belonging to the same group with the same properties. AMY-III was electrophoretically homoge-

neous with a molecular mass of 42 kDa and pI of 5.8. The AMY-III showed a unique property with a low temperature optimum at 25 °C, unlike other plant, animal and microbial amylases that generally had optima at around 35-55 °C. The Arrhenius plot for the enzyme also gave an unusual curve, i.e. the plot greatly deviated from a straight line above 25 °C. This suggests the occurrence of a conformational change in the structure of AMY-III around 25 °C in the presence of substrate. The AMY-III also showed a great reduction of its activity when raw starch or a higher maltooligosaccharide of DP 17 was added.

Amino acid sequences of AMY-I and AMY-III

Two α -amylase cDNA clones corresponding to AMY-I and AMY-III contained 1686 and 1688 base pairs, respectively. From the deduced amino acid sequence, both AMY-I and AMY-III have no putative N-glycosylation sites (Fig. 1). The degree of similarity in nucleotide sequences between the two isozymes is estimated to be 74%. AMY-I had a nucleotide sequence identical to that of the cDNA clone of pOS137, obtained from germinated rice seed (O'NEILL et al., 1990). AMY-III was also shown to be identical in sequence to a genomic clone without introns of Ramy-3E obtained from rice (202) DNA (HUANG et al., 1990).

Fig. 2. Construction of expression plasmid, pETAMY-I or pETAMY-III, for *Escherichia coli*. The cDNA sequences of *AMY-I* and *AMY-III* were modified to include the restriction enzyme *Nde* I cleavage site, and were digested with *Nde* I and *Bam*H I. These cDNA inserts, which cover the mature sequences of *AMY-I* and *AMY-III* coding regions, were inserted into the *Nde* I and *Bam*HI site of pET12a. These plasmids were transformed into *E. coli* BL21(DE3)pT-groE.

Table 1. Some properties of α -amylase isozymes AMY-I and AMY-III from rice cultured cells.

	Properties	AMY-I	AMY-III
Optimum pH 4.8 4.5	Molecular mass (SDS-PAGE) (Calculated) Isoelectric point $K_{\rm m}$ for soluble starch (mg/mL) Optimum temperature Optimum pH	45,000 45,316 6.0 1.1 55 °C 4.8	$\begin{array}{c} 42,000\\ 46,123\\ 5.8\\ 5.0\\ 25^{\circ}\mathrm{C}\\ 4.5\end{array}$

Expression of AMY-I and AMY-III

To express α -amylase as a mature form in *Escherichia coli*, the restriction enzyme *Nde* I cleav-

age site was introduced to AMY-I and AMY-III between signal sequence and mature sequence. NdeI-EcoRI fragments encoding mature sequence of AMY-I and AMY-III were inserted into the E. coli expression vector, pET12a (Fig. 2). The resulting vectors (pETAMY-I and pETAMY-III) containing AMY-I and AMY-III were transferred to E. coli BL21(DE3) pT-groE having the T7 RNA polymerase gene, and expression of AMY-I and AMY-III was induced by the addition of IPTG. Expression in E. coli was detected by western blot analysis which showed a single band of 45 kDa and one at 42 kDa co-migrating with native AMY-I and AMY-III, respectively.

The purified recombinant AMY-I and AMY-III had identical N-terminal amino acid sequences

	TT . 1		D	(~)		
E. coli.						
Table 2.	Effects of maltooligosaccharides	and corn starch	on the activity	of AMY-I and	AMY-III	expressed in

Enzyme	Host cell	Remaining activity $(\%)$		Remaining activity (%) None $C7$ $C17$ Corp starch	
		None	Gi	617	Com staren
AMY-I	rice cell	100	103	92	100
	$E \ coli$	100	90	94	85
AMY-III	rice cell	100	93	13	20
	$E. \ coli$	100	110	39	41

Table 3. Effects of maltooligosaccharides and temperature dependency on the activity of chimeric α -amylases expressed in *E. coli*.

Enzyme	Remaining activity (%)		Ratio of specific activity	Type of enzyme	
	None	G17	$(55^{\circ}\mathrm{C}/25^{\circ}\mathrm{C})$		
AMY-I	100	110	1.3	-	
AMY-III	100	40	0.3	_	
3-1 (MluI)	100	84	1.7	AMY-I	
3-1 (ScaI)	100	86	1.4	AMY-I	
3-1 (NaeI)	100	11	0.4	AMY-III	
3-1-3(Scal, Sall)	100	101	2.5	AMY-I	
1-3 (<i>Mlu</i> I)	100	13	0.3	AMY-III	
1-3 (ScaI)	100	10	0.6	AMY-III	
1-3 (Sall)	100	86	2.5	AMY-I	
1-3-1(ScaI, NaeI)	100	23	0.2	AMY-III	

to those of native AMY-I and AMY-III, respectively. The recombinant enzymes showed the same characteristic properties as the native enzymes with respect to the temperature dependency and the effects of maltooligosaccharides on α -amylase activities. (Fig. 3, Tab. 2).

Construction and characterization of chimeric α -amylases

To discover which part of the primary structure is responsible for the unique properties of AMY-III that has a low temperature optimum and susceptibility to maltooligosaccharide effectors, several chimeric genes were constructed using various combinations of AMY-I and AMY-III fragments (Fig. 4). Table 3 shows the temperature dependency and effects of maltooligosacharide effectors on the activity of chimeric α -amylases. Four chimeric α -amylases that carry the region c of AMY-I (3-1 Mlu I, 3-1 Sca I, 3-1-3 Sca I Sal I and 1-3 Sal I) had a higher optimum temperature and gave residual activities similar to native AMY-I after treatment with maltooligosaccharide effectors (G7 and G17). On the other hand, the other four chimeric enzymes carrying region c of AMY-III showed the same temperature depen-

Fig. 3. The temperature dependence of the activity of AMY-I and AMY-III expressed in *E. coli*. The relative activities of AMY-I and AMY-III are shown. The maximum activity of AMY-I and AMY-III at optimum temperature were normalized to 100%. AMY-I (open circles) and AMY-III (filled circles). The activities of intact AMY-I and AMY-III are shown by full lines and those of recombinant enzyme are shown by dotted lines.

Fig. 4. Structure of chimeric genes and characterization of chimeric α amylases. (A) Schematic structure of α -amylase. A, B, C, and D are conserved regions in all α -amylases; a, b, c, and d are non-conserved regions between AMY-I and AMY-III. (B) Structure of chimeric genes. AMY-I, (open box); AMY-III, (full box).

dency as AMY-III and the activity at $25 \,^{\circ}$ C was higher than at 50 $^{\circ}$ C. Moreover, the remaining activity of these four chimeric enzymes after treatment of G17 maltooligosaccharide showed a significant reduction of soluble-starch-hydrolyzing activity, while G7 treatment had no effect.

Discussion

Although the AMY-III amino-acid sequence showed 74% similarity to that of the AMY-I, the AMY-III showed unique properties with an abnormal low temperature optimum and susceptibility to the maltooligosaccharide effectors. These properties are very different from those of the AMY-I and also other known cereal amylases (CHIBA et al., 1990, 1991; ОКАМОТО et al., 1978). Comparison of the amino acid sequences of various α amylases (NAKAJIMA et al., 1986) indicated that four highly similar regions namely, regions I, II, III and IV, are conserved in all amylases examined. Both AMY-I and AMY-III contain all of these four conserved regions designated as regions A, B, C and D (Fig. 1). X-Ray crystallographic studies of Aspergillus oryzae α -amylase (MATSUURA et al., 1984) and porcine pancreatic α -amylase (BUISSON

et al., 1987) indicated that these regions may function as catalytic, substrate-binding, or calciumbinding sites. The characteristic properties of the AMY-III may be derived from unconserved regions with low amino acid sequence similarity that are designated a, b, c, and d (Fig. 1).

Characterization of eight chimeric α -amylases indicated that region c (Fig. 4) was a critical site for the characteristics of AMY-I or AMY-III. This region lies between the conserved regions B (or II) and C (or III) in which the active site Asp and Glu are located.

Secondary structural analysis by the CHOU and FASMAN method (CHOU & FASMAN, 1978) indicated that region c of AMY-I had the same α -helix as other well-studied α -amylases, such as Aspergillus oryzae α -amylase (MATSUURA et al., 1980), porcine pancreatic α -amylase (BUISSON et al., 1987) and barley α -amylase (JUGE et al., 1996). On the other hand, AMY-III is predicted to have a β -sheet structure for this region c. This conformational change may influence the characteristics of AMY-III. To identify which amino acids are important for AMY-III characteristics, direct replacement of each amino acid residue in region c by site-directed mutagenesis is now in progress.

Acknowledgements

This work was supported in part by a Grant-in-Aid from the Ministry of Science, Technology, and Education of Japan.

References

- ABE, R., YOSHIDA, K., AOYAGI, M., KASAHARA, S., ICHISHIMSA, E. & NAKAJIMA, T. 1999. Characterization of chimeric enzymes constructed between two distinct α-amylase cDNA from cultured rice cells. Biosci. Biotechnol. Biochem. 63: 1329-1335.
- BUISSON, G., DUEE, E., HASER, R. & PAYAN, F. 1987. Three dimentional structure of porcine pancreatic α -amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J. **6**: 3909-3916.
- CHIBA, Y., UI, M., KATO, Y., NAKAJIMA, T. & ICHSHIMA, E. 1990. Two group of intracellular αamylase isoenzymes from cultured rice cells. Phytochemistry 29: 2075-2078.
- CHIBA, Y., NIEDA, Y., NAKAJIMA, T. & ICHISHIMA, E. 1991. Unique properties of α-amylase-III from suspension-cultured rice cells. Agric. Biol. Chem. 55: 901-902.
- CHOU, P. Y. & FASMAN, G. D. 1978. Prediction of the secondary structure of proteins from amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 45-148.
- HUANG, N., KOIZUMI, N., REINL, S. & RODORIGUEZ, R. L. 1990. Structural organization and differential expression of rice α -amylase genes. Nucleic. Acids Res. **18**: 7007-7014.
- JUGE, N., SOGAARD, M., CHAIX, J., MARTIN-EAU-CLAIR, M., SVENSSON, B., MARCHIS-MOUREN, G.

& GOU, X. 1993. Comparison of barley malt α amylase isozymes 1 and 2: Construction of cDNA hybrids by in vivo recombination and their expression in yeast. Gene **130**: 159-166.

- MITSUI, T., UEKI, Y. & IGAUE, I. 1993. Biosynthesis and secretion of α -amylase by rice suspensioncultured cells: purification and characterization of α -amylase isozymes. Plant Physiol. **31:** 863-874.
- NAKAJIMA, R., IMANAKA, T. & AIBA, S.1986. Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23: 355-360.
- OKAMOTO, K. & AKAZAWA, T. 1978. Purification of α -amylase and β -amylase from endosperm tissues of germinating rice seeds. Agric. Biol. Chem. **42**: 1379-1364.
- O'NEILL, S. D., KUMAGAI, M. H., MAJUMDAR, A., HUANG, N., SUTLIFF, T.D. & RODORIGUEZ, R. L. 1990. The α -amylase genes in *Oryzae sativa*: Characterization of cDNA clones and mRNA expression during seed germination. Mol. Gen. Genet. **271**: 235-244.
- ROGERS, J. C. & MILLIMAN, C. 1983. Isolation and sequence analysis of a barley α -amylase cDNA clone. J. Biol. Chem. **258**: 8169-8174.
- SOGAARD, M. & SVENSSON, B. 1990. Expression of cDNAs encoding barley α -amylase 1 and 2 in yeast and characterization of the secreted proteins. Gene **94:** 173-179.
- TERASHIMA, M., KATOH, S., THOMAS, B. R. & RODORIGUEZ, R. L. 1995. Characterization of rice α -amylase isozymes expressed in *Saccharomyces cerevisiae*. Appl. Microbiol. Biotechnol. **43**: 1050-1055.

Received October 4, 2001 Accepted February 12, 2002