Status of populations of the genus *Cobitis* in Slovakia

Věra Lusková¹, Ján Koščo², Karel Halačka¹, Ivan Stráňai³, Stanislav Lusk¹ & Martin Flajšhans⁴

¹Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, CZ–60365 Brno, Czech Republic; e-mail: luskova@ivb.cz
²Department of Ecology, University of Prešov, ul. 17. novembra 1, SK–08116 Prešov, Slovakia; e-mail: kosco@unipo.sk
³Department of Poultry Science and Small Animals Husbandry, Faculty of Agrobiology and Food Resources, Slovak Agricultural University in Nitra, Tr. A. Hlinku 2, SK–94976 Nitra, Slovakia; e-mail: Ivan.stranai@uniag.sk
⁴University of South Bohemia České Budějovice, Research Institute of Fish Culture and Hydrobiology, CZ–38925 Vodňany, Czech Republic; flajshans@vurh.jcu.cz


Genetic and karyological analyses of specimens of 15 populations of the genus *Cobitis* revealed that the species *Cobitis taenia* did not occur in the hydrographic system of Slovakia, until recently. Five populations in the Danube drainage area were identified as hybrid diploid-polyploid complex *Cobitis elongatoides* × *C. tanaitica*. Five populations in the Slaná river drainage area were found belonging to the diploid pure species *Cobitis elongatoides*. Specimens of four populations of the Bodrog river drainage area were analyzed and assessed as hybrid diploid-polyploid complex *C. elongatoides* × *C. tanaitica*. Similarly, a hybrid complex of analogous karyological characteristics was registered in the Tisza river drainage area. It might seem improbable that the species *C. taenia* would occur in Slovakia (Central Europe) as it was presented until recently or, that it would be represented in the hybrid complexes.

Key words: *Cobitis*, taxonomic status, *Cobitis elongatoides*, ploidy, hybrid complex, Slovakia.

Introduction

There are major changes in the recent knowledge of the species composition of the genus *Cobitis* in Europe. The original view that the populations of *Cobitis* living in Europe belonged to the species *Cobitis taenia* L., 1758 which in the respective areas has been yet divided into subspecies (LELEK, 1987; HOŁČIK, 1995) has changed radically. The principal change was brought about by knowledge on the occurrence of hybrid diploid – polyploid complexes apart from pure species within the genus *Cobitis* in Europe (VASILEV & VASILEVA, 1982; VASILEV et al., 1989, 1990; BORON, 1992 and others). The situation was also complicated by the promotion of the subspecies category to the species level of this genus (KOTTELAT, 1997). This entrenched more than 10 species within the
Table 1. Samples taken from Cobitis populations examined in Slovakia.

<table>
<thead>
<tr>
<th>No. of population Stream</th>
<th>Males/ Females</th>
<th>Flow cytometry analysis</th>
<th>Allozyme analysis</th>
<th>Chromosome 2n</th>
<th>3n</th>
<th>4n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Morava, r.km 72.5</td>
<td>3 M/48 F</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>2 M</td>
<td>1 M/27 F</td>
</tr>
<tr>
<td>2. Hron, r.km 0.5</td>
<td>7 F</td>
<td></td>
<td></td>
<td></td>
<td>7 F</td>
<td></td>
</tr>
<tr>
<td>3. Nitra channel</td>
<td>21 F</td>
<td></td>
<td>21</td>
<td>5</td>
<td>21 F</td>
<td></td>
</tr>
<tr>
<td>4. Ipeľ r.km 69.0</td>
<td>2 M/22 F</td>
<td>24</td>
<td>4</td>
<td>1 M</td>
<td>1 M/21 F</td>
<td></td>
</tr>
<tr>
<td>5. Paríž</td>
<td>4 F</td>
<td></td>
<td></td>
<td></td>
<td>4 F</td>
<td></td>
</tr>
<tr>
<td>6. Blh</td>
<td>12 M/8 F</td>
<td>14</td>
<td>16</td>
<td>7</td>
<td>12 M/8 F</td>
<td></td>
</tr>
<tr>
<td>7. Ida</td>
<td>18 M/20 F</td>
<td>23</td>
<td>17</td>
<td>5</td>
<td>8 M/15 F</td>
<td></td>
</tr>
<tr>
<td>8. Belianský</td>
<td>13 M/16 F</td>
<td>18</td>
<td>17</td>
<td>6</td>
<td>8 M/10 F</td>
<td></td>
</tr>
<tr>
<td>9. Torysa</td>
<td>7 M/6 F</td>
<td>13</td>
<td>13</td>
<td>2</td>
<td>7 M/6 F</td>
<td></td>
</tr>
<tr>
<td>10. Ošava</td>
<td>23 M/31 F</td>
<td>31</td>
<td>17</td>
<td>11</td>
<td>14 M/17 F</td>
<td></td>
</tr>
<tr>
<td>11. Bodrog</td>
<td>9 M/54 F</td>
<td>44</td>
<td>21</td>
<td>14</td>
<td>8 M/5 F</td>
<td>36 1 M/2 F</td>
</tr>
<tr>
<td>12. Latorica</td>
<td>3 M/27 F</td>
<td>20</td>
<td>21</td>
<td>4</td>
<td>1 M/2 F</td>
<td>1 M/17 F</td>
</tr>
<tr>
<td>13. Onďava</td>
<td>28 F</td>
<td>26</td>
<td>24</td>
<td>5</td>
<td>1 F</td>
<td>25 F</td>
</tr>
<tr>
<td>14. Uh (ch. Revištia)</td>
<td>8 M/97 F</td>
<td>22</td>
<td>8</td>
<td>5</td>
<td>3 M</td>
<td>1 M/17 F</td>
</tr>
<tr>
<td>15. Tisza</td>
<td>2 M/19 F</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>2 M</td>
<td>17 F</td>
</tr>
</tbody>
</table>

range originally attributed to C. taenia. The application of genetic methods in the research of populations of the genus Cobitis within the last decade brought a lot of knowledge on structure of this genus in Europe. It was found that apart from pure species there were populations, so-called hybrid diploid-polyploid complexes consisting of species with a genome composed of sets of at least two species, as well as individuals of the donor species. The following four species share the creation of these complexes: Cobitis taenia L., 1758, Cobitis elongatoides Bacescu et Maier, 1969, Cobitis tanaitica Bacescu et Maier 1969 and Cobitis melanoleuca Nichols, 1925 (see reviews in Freyhof et al., 2000; Bohlen & Ráb, 2001). At present, 23 species of Cobitis and about 16 various hybrid complexes have been identified in Europe (Bohlen & Ráb, 2001). Populations of Cobitis in the hydrological system of Slovakia (Central Europe) were classified as C. taenia (Holcik, 1995, 1996; Hensel & Mužík, 2001) until recently. This study brings new knowledge on the status of populations of the genus Cobitis from Danube river and Tisza river drainage areas in Slovakia.

Material and methods

Specimens of 15 populations of the genus Cobitis from hydrological system of Slovakia (see Fig. 1 and Tab. 1) were sampled in 1999–2003. The sex of the captured specimens was identified according to lamina circularis, an oval bony formation on the IInd. ray of pectoral fin. As evident in Table 1, only some of the specimens were sampled for laboratory analyses, the rest were released after identification of sex. Karyological analyses, allozyme analyses and flow cytometry were performed for taxonomic identification and ploidy level assessment. These methods were not applied parallelly to all specimens studied.

Chromosome preparations were made from kidney using standard methods according to Boron & Kotusz (2000). Air-dried slides were stained with 4% Giemsa solution. The chromosome classification of Leván et al. (1964) was adopted. Allozyme analysis was based upon protein electrophoresis (ŠlechTOVÁ et al., 2000). Diagnostic alleles with the following patterns were used for identification of genomes of C. elongatoides and C. tanaitica: Sod* 60, 100, Gpi-A* 88, 100, 110, sAat 1* 74, 85, 100. Tetraploid status was assessed by means of a diagnostic allele Gpi-A* 88, 100, 100, 113. Ploidy analysis was performed also on Partec CCA 1 flow cytometer (Partec GmBH, Germany) according to Vindelov & Christensen (1994) by determination of the relative DNA content in muscle tissue cells fixed in ethanol, using High Resolution DNA kit T (Partec GmBH, Germany) with 4′, 6-diamidino-2-phenylindol (DAPI; excitation/emmision maxima 358/461 nm) for nuclear DNA staining (Otto, 1994). Diploid form confirmed by karyotype analysis was used as reference standard.

Results

Danube drainage area (Tab. 1, populations No. 1–5)

The occurrence of diagnostic alleles either for C. elongatoides, or for C. tanaitica confirmed that females in samples Nos. 2 (Hron), 3 (Nitra) and 5 (Paríž) were exclusively triploid 2 C. elongatoides × 1 C. tanaitica This was confirmed by karyolog-
Fig. 1. Localization of the studied populations of the genus *Cobitis* on the territory of Slovakia: 1 – Morava, r.km 72.5; 2 – Hron, r.km 0.5; 3 – Nitra (Dlhý canal); 4 – Ipeľ, r.km 69.0; 5 – Paríž (Nitra); 6 – Blh; 7 – Ida; 8 – Beľánsky; 9 – Torysa; 10 – Ošava; 11 – Bodrog; 12 – Latorica; 13 – Ondava; 14 – Uh (canal); 15 – Tisza.

Fig. 2. Histogramme of distribution of relative DNA content in cells of muscle tissue of: a – diploid *C. elongatoides* from Ida river; b – triploid 2 *C. elongatoides* × 1 *C. tanaitica* from Ondava river; c – tetraploid 2 *C. elongatoides* × 2 *C. tanaitica* from Bodrog river.
Discussion

All data on the occurrence of populations of the genus Cobitis in the Danube and Tisza river drainage areas in Slovakia were hitherto diagnosed as Cobitis taenia (KUX & WEISZ, 1964; KIRKA et al., 1981; HOLČÍK, 1995). Similarly, the last version of the Red list of lampreys and fishes of Slovakia reports solely on Cobitis taenia (HOLČÍK, 1996; HENSEL & MUZIK, 2001). Our results demonstrate that this species does not occur in Slovakia. Cobitis taenia occurs either as a pure species or in hybrid complexes in northern parts of Europe, in the Baltic Sea and North Sea basins (ŠLECHTOVA et al., 2000; BOHLEN et al., 2002; BORON & KOTUSZ, 2000), in England (our unpublished data) and in Ukraine and Russia (VASILEVA & VASILEV, 1998). In the territory of the Czech Republic, the haploid set of genome of C. taenia occurs in the hybrid type in the Elbe river drainage area (RA et al., 2000). A possibility of the occurrence of the C. taenia genome could be in streams belonging to the Baltic Sea basin (Poprad) but no occurrence of Cobitis was recorded there in the territory of Slovakia (WEISZ & KUX, 1959; KUX & WEISZ, 1960; KIRKA et al. 1978). For the time being, there is no information from the Danube drainage area about any recordings of C. taenia either as a pure species, or as a part of a hybrid type (RA et al., 2000; BOHLEN & RA, 2001). From the territory of Hungary where the studied hydrological system of Slovakia passes, there is only one genetically verified record on the occurrence of the hybrid complex C. elongatoides × C. tanaitica from Szodrakó stream, a tributary of the Danube (BOHLEN & RA, 2001; EKÖS, 2003). From the Dyje river (a tributary of Morava river on the territory of the Czech Republic), the occurrence of diploid C. elongatoides was identified from the spring zone, as well as the occurrence of the hybrid complex C. elongatoides × C. tanaitica from the middle- and lower reach (RA et al., 2000; ŠLECHTOVA et al., 2000). Site No. 2 Morava stream, where the same result was gained, is related to the lower reach of Dyje. Nevertheless, it is true that with regards to the range of Danube drainage area, knowledge on the status of populations determined by means of genetic methods is currently insufficient.

The hybrid complexes have been found to contain in addition to the predominant triploid individuals, also diploid ones that, with regard to the structure of their karyotype, are either the pure donor species or less frequent hybrids. Diploid hybrids C. taenia × C. elongatoides have been reported from Germany (BOHLEN et al., 2002), the same as from the drainage area of the Odra river in Poland (BORON & KOTUSZ, 2000). The occurrence of tetraploid individuals in the hybrid complexes is the least frequent. From the upper part of the Danube drainage area there have been reports of tetraploid individuals 2 C. elongatoides × 2 C. tanaitica (BOHLEN et al. 2002). We found the same genome combination in the hybrid complexes in the drainage areas of the rivers Bodrog and Tisza. Likewise, tetraploid combinations of the genomes of two species have been reported from Poland, Russia and Ukraine (VASILEVA, 2000; BORON, 2001). Evaluating the representation of ploidy in the hybrid complexes, our own results show differences between the sexes. In most cases, the males are diploid or, in single cases only, triploid or even tetraploid. The females are predominantly triploid and just occasionally diploid or tetraploid. In a hybrid complex produced by two species, one could find theoretically eight genome variations, consisting of genome parts of the two initial species, the occurrence of which could be 2n, 3n, and 4n. Some observations indicate that a hybrid complex may even contain sets of genomes of three species (VASILEV et al., 1989; RA et al., 2000), which leads to the possible occurrence of additional variations in the genome structure. The above tends to show that the hybrid complexes within the genus Cobitis present very complex biological units.

A correct identification of the taxonomic status of populations of the genus Cobitis is a necessary prerequisite for effective application of conservation arrangements. Presently valid legislative conservation of Cobitis either on a European level (Council Directive No. 92/43/EEC), or on a national level (Czech Republic, Slovak Republic and other states) arose at a time when most populations were considered a part of species Cobitis taenia (LELEK, 1987).

In order to provide effective national legislative conservation, it is necessary to know about particular species and the hybrid status of Cobitis populations (LUSK et al., 2002). As the determination by means of karyological and other genetic methods is time-demanding and professionally exigent, it would be useful to employ some basic knowledge for preliminary identification whether a population of diploid individuals or a hybrid complex is concerned. To gain the necessary knowledge of the status of Cobitis populations, we recommend the following approach:

1. To perform sex determination of the highest possible number of live specimens in the field.
A high proportion of males (above 40%) provides a signal that it might concern a population of diploid bisexual fish of a pure species. In this case it is enough to sample several (up to 10) specimens for the determination of species specificity. If females dominate (80% and more), it is necessary to sample more specimens for the determination of ploidy level and identification of the hybrid complex.

2. Flow cytometry reveals the ploidy level of the sampled fish. The number of samples for the karyotype analysis can be derived from these data.

3. Karyotype analysis or, preferably, protein electrophoresis allows identification of species specificity and of hybrid composition of the population sample studied.

It seems necessary to obtain more data on the status of Cobitis populations in the Danube drainage area, with regards to its size (817,000 km²). These data should answer the question if, apart from pure diploid populations of C. elongatoides, any diploid pure populations of C. tanaitica occur there. Currently, there is just one record of the occurrence of diploid individuals of C. tanaitica from the lower part of the drainage area in Romania (BOHLEN & RAB, 2001). Our current knowledge (ŠLECHTOVÁ et al., 2000; LUSK et al., 2000, these results) indicates that populations of diploid pure species C. elongatoides were maintained only in the terminal parts of the drainage areas of individual tributaries of main rivers. Central and lower parts are inhabited by the hybrid complex. The hybrid complex C. elongatoides × C. tanaitica arose in the zone of contact between these two species. If the populations of pure C. tanaitica did not occur in other parts of the Danube drainage area, it might be presumed that the hybrid complex C. elongatoides × C. tanaitica inhabited the Danube drainage area later. It would overlap and fuse with the original populations of C. elongatoides. C. elongatoides served as host, if polyploid individuals had at least 2 sets of the genome of this species.

The present legal tools protecting biodiversity are based on the concept of a species as the basic unit in the sense of the Linnaean classification of organisms. Data obtained by the application of genetic methods in recent years have posed the problem of sibling species, hybrid complexes, and even populations themselves as the objects of protection (TAYLOR, 1999; VASILEVA, 2000; BOHLEN & RAB, 2001). In order to secure effective legal protection of fish biodiversity, it is necessary to enlarge the specification of the object of this protection, besides the classical concept of species, by additional natural developmental units, as indicated above. In our case it would appear necessary, for the populations of Cobitis spp. living in the waters of Slovakia, to specify the object of protection as “Cobitis elongatoides and hybrid complexes”.

Acknowledgements

This study was based upon cooperation of the Department of Ichthyology, Institute of Vertebrate Biology, Academy of Sciences, Brno with the Department of Ecology, University of Presov, with the Department of Poultry Science and Little Commercial Animals, Slovak Agricultural University in Nitra and with the University of South Bohemia České Budějovice, Research Institute of Fish Culture and Hydrobiology at Vodňany, Czech Republic. Financial support was provided by grant No. 206/00/0688 Grant Agency of the Czech Republic, research project No. S506111 Academy of Sciences of the Czech Republic and by research plan No. MSM 126100001 Ministry of Education, Youth and Sports of the Czech Republic. We thank Dr. J. MAJSKY and Dr. J. KAUTMAN for submission of samples of Cobitis. We are grateful to Dr. I. TODD for improvement of the English.

References


HENSEL, K. & MUŽÍK, V. 2001. Červený (ekozoologický) zoznam mihúľ (Petromyzontes) a rýb
(Osteichthyes) Slovenska [Red (ecozootological) list of lampreys (Petromyzontes) and fishes (Osteichthyes) of Slovakia], pp. 143–145. In: Bálaž, D., Marhold, K. & Ťrában, P. (eds) Červený zoznam nástin a živočíchov Slovenska, Ochrana Prirody 20, Suppl.


Received August 25, 2003
Accepted November 13, 2003

626